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Summary
The cooperative agreement covered work between August 1995 and August 1997. During
that time, Dr. Raphael T. Haftka, Dr. John H. Garcelon and Dr. Mehmet Akgtin at the
University of Florida worked together with Dr. Stephen J. Scotti of the Thermal Structures
Branch of the NASA Langley Research Center. The focus of the work was efficient
approximations of structural response and sensitivity. The effort proceeded in three
directions as follows:

1. Development of an approximation based on work by Kirsch, extended to efficient
sensitivity approximations and demonstrated for structural models for the High Speed
Civil Transport. A paper on this part was written and presented (Ref. 1). An updated
version, Attachment A, was submitted to the AIAA Journal.

2. Preliminary development of the adjoint method for calculating sensitivity derivatives,
Attachment B

3. A review of method for fast exact reanalysis, Ref. 2, was submitted to a conference,
and a draft is included as Attachment C.
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Approximations for structural response and design sensitivities significantly reduce the
computational cost of structural optimization. To be useful the approximation must be

accurate and computationally efficient. Damage tolerant design puts even more stringent
computational demands on optimization procedures and approximations due to the large
structural changes inherent in damage. A robust approximation is evaluated and extended to

include design sensitivities. It is implemented in an optimization procedure and tested. It is

shown that this approximation is accurate and efficient for damage tolerant optimum design
of complex structural models. Lastly, a qualitative measure is developed and tested that
estimates the computational savings using the approximation.

Introduction

Structural optimization often requires a large number of
structural analyses, and for complex structures this can

become prohibitively expensive. For this reason, it is

common to use approximations to the structural analysis
during the optimization process to reduce the

computational cost. There are two general categories of

approximations according to their ranges of
applicability in the design space. Global approximations

are valid in large regions of the design space, while

local approximations are only valid in the vicinity of a
point in the design space)

Damage tolerant design is defined as a design that can
tolerate the destruction of one or more major structural

components. In composite aircraft structures,

conventional damage tolerant design typically resttlts in
a significant mass penalty. However, through optimal

design for damage tolerance, this mass penalty can be
significantly reduced."

Damage tolerant design requires a global approximation

because of the large changes possible in the response of

a damaged structure. The need for an efficient and
accurate approximation is particularly acute when

structures are designed for improved damage tolerance

since a large number of damage scenarios must be
considered to avoid designs tailored to withstand

damage at only particular locations. In that case, each

structural design has to be evaluated by analyzing the
undamaged structure as well as a host of damage

configurations under several load cases typically
different for the undamaged and damaged cases. In

addition, for optimization we usually need the

derivatives of the structural response of the undamaged

and damaged configurations with respect to the design
variables.

Local function approximations are usually based on a
series expansion about a point in the design space.

Storaasli and Sobieszczanski used the fu'st-order Taylor
series for reanalysis of structures with small structural

changes) Approximate reanalysis was done in a

fraction of the time with displacement and stress errors
less than 16%. Noor and Lowder found that the first-

order Taylor series expansion technique was inaccurate

for stiffness changes greater than 20%. 4 They also
considered second-order Taylor series expansions,
which they found to be more accurate but at a

substantial increase in computational cost. s Taye used a
binomial expansion to directly approximate structural
response. 6 The accuracy of the binomial series
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approximationdepends on the magnitude of the changes
to the structure, making it also a local approximation.

The reduced basis technique is a _obal approximation

that expresses the structural response as a linear
combination of known independent vectors. The

accuracy of this technique depends on the number and

quality of the basis vectors. The number of basis vectors

is typically much less than the number of degrees of
freedom. Fox and Miura used as basis vectors

previously computed displacement vectors obtained
from previous changes to the structure. 7 Kavanagh

employed eigenvectors of the original structure: Only

those eigenvectors with a significant energy
contribution were included. Noor and Lowder used

response first derivatives for basis vectorsJ All these

basis vectors work well in approximating global

changes; however, accuracy is still limited for complex
structures, and computational efficiency may still be

improved.

Kitsch has developed a combined binomial-reduced

basis approximation, which has proved to be highly

accurate even for large structural changes in truss
structures. 9 Similar to Noor and Lowder's approach,
Kitsch uses the first several terms in the binomial series

as basis vectors. He shows good results for changes in

the design variables of up to 700%.

The objectives of the present paper are: (a) to

investigate the accuracy and efficiency of the combined

approximation for complex wing structures under
severe damage conditions; (b) to extend the method to

approximations of the derivatives of damaged structural

response with respect to design variables; (c) to include
the approximation procedure together with a sequential

approximate optimization method; and (d) to estimate
the computational savings that these approximations

provide.

The paper begins with a section presenting the problem
statement, followed by a summary of the combined

approximation. Next the extension of the method to

design derivative approximation is presented, a section
on the optimization method follows, and two example

problems are used to demonstrate the application to

realistic models of wing structures.

Problem Statement

Given an undamaged structure's stiffness matrix, K0,

and the vector of applied loads, R, the displacements,

uo, can be calculated using the displacement method of

analysis

Ko Uo = R.

R is assumed independent of the stiffness and damage.

Ko will change due to damage (talK) and the damaged
structure's stiffness matrix is,

K=Ko +AK.

An exact reanalysis requires solving the modified

system of equations for the new displacements, u,_,,

K u_ = (Ko + ztd() u_,_ = R. (1)

Combined Approximations

Local approximations are based on series expansions
about a baseline stiffness matrix and are accurate for

small changes in the matrix. One such local

approximation is based on the binomial series,

u,_ = no - Ko -1 aK uo + ['I% "l zXK]z u0 -

[-I%"z _XK]3 u0 + .... (2)

The computational effort and the accuracy of the
approximation depend on the number of terms retained
in the series.

Global approximations are valid for large changes in the
stiffness matrix. In the reduced basis method, the

displacement vector, u, is approximated by a linear

combination of n linearly independent displacement
vectors. Usually n is a small number.

u _ q0 Uo + ql ul + _ u,. +... + ch. I u,.i = UB q. (3)

UB is a collection of the n displacement vectors.
Substituting the approximate displacements from

equation (3) for Unewin equation (1) and pre-multiplying
by UB"ryields

Us T K Us q = UBT R. (4)

The reduced stiffness matrix is introduced as

Krt = Us r K UB, (5)

and the reduced load vector is

R_t = UBT R, (6)

So that equation (4) becomes

KR q = RR. (7)

The reduced stiffness matrix, KR, is n x n in size, and

the reduced load vector, RR, is n x I in size, where n <<

m. The coefficients, q, are obtained by solving equation
(7) and the approximate displacements, u, are then
calculated using equation (3).
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Thesuccess of the reduced basis method depends on

selecting an appropriate set of linearly independent
basis vectors, UB. _ The selection of basis vectors has

been highly problem dependent;, however, K.irsch uses
the first several terms of a series as basis vectors as does

Noor. Kitsch calls this technique Combined

Approximations (CA).

Kitsch has demonstrated excellent results using this

technique on simple truss and frame problems. We have
extended the combined approximation technique by

including approximations for structural response
derivatives and by applying higher order

approximations for more complex structures. Using the

binomial series (2), basis vectors uj, j=l...n-1 can be

generated by using the following recursive relationship,
noting that Ko is available in decomposed form and the

In'st basis vector is the nominal displacements:

uo - nominal displacements,

Kouj=-_,: uj._, j=l .... n-I. (8)

Using this recursive relationship, generating basis

vectors is relatively inexpensive computation,ally, and

high order approximations can easily be generated. For
the structural models presented in tiffs paper, generation

of each basis vector requires 2% of the time required for

a complete analysis. A first order approximation uses
the first two terms of the binomial series; second and

third order approximations use three and four terms,

respectively.

Approximation to Design Derivatives of

Response With Damage

The previous section described the approximations used
for the response of damaged configurations. For the
design process we need also the derivatives of the

response with respect to changes in structural
parameters. This section describes a process that

approximates these derivatives.

Consider the displacement approximation given in

equation (3), where q are coefficients determined using

the CA approach, and Uo are the exact displacements of

the nominal structure. Differentiating with respect to

design variable x (denoted using the comma notation,)

fields the following equation:

u,_ _ UB q,_ + UB,x q = q0,_ Uo +. • • + qn-_,_ un.l + q0 uo,_

+... + qn-i un+_(9)

The displacement response basis vectors uo through u_q

have previously been computed. In addition, u0,x, the
sensitivity derivative of displacements for the

undamaged structure, is normally computed in structural

opfimiT_tion" and can be calculated using any standard
method such as the semi-analytical method shown in
equation 10.

no, x = -Koq(AK / Ax) u0. (10)

The other basis vector derivatives, u_,x through unq,x,
are expensive to calculate and are truncated from

equation (9) to yield the following displacement
derivative approximation:

u,_=bouo+... +b_.l u,.l +b, uo,_=Vab, (11)

where b are the unknown coefficients. Differentiating

the displacement equation (I) with respect to a
structural parameter, x, yields

(K), _u + K u, _ = 0. (12)

Introducing equation (3) and equation (11) into
equation (12) gives,

K Va b = -(K), _ Ua q. (13)

Premultiplying both sides of equation (13) by Va T,

VB T K V a b = -VB T (K), x UB q- (14)

The reduced stiffiaess matrix is

KR = Va T K VB, (15)

and (K), _ is approximated by the finite difference,

(K), x_ AK/Ax. (16)

The coefficients, b, can be determined by solving,

K_ b = -V8 r AK / Ax UB q, (I 7)

and the displacement derivative approximated by

u, _ = Va b. (18)

Using u, _, the stress derivatives may be computed. It is

important to realize that although the accuracy of the
response approximation can be improved by using more

basis vectors (equation 8), the accuracy of the design

derivatives is influenced by the truncation of equation
(9).

Optimization Procedure

The optimization problem calls for _ing the

weight, IV, subject to constraints on stresses, buckling,
and displacements and is formulated as

Minimize W (x ),

such that g_ (x) < 0.

where gi are the constraint functions. The optimization

is solved by a sequential Linear programming (SLP)

procedure, developed by Scoff'i, which employs both
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linear constraintapproximationsand derivative
approximations,t° In addition,the SLP procedure
employsapenalizedobjectivefunction,P, given as

P = W ÷ K_'[ max(g,,0).
i

Where K is a constant set to be larger than the largest of

all Lagrange multipliers of the constraints. This

penalized objective ensures that when no feasible
solution exists to the linearized problem (possibly due

to move limits), the solution found will _e the

magnitude of the constraint violations.

Move limits are incorporated to ensure the accuracy of

the linear programming problem. To reduce the number

of design variables, design variable linking is used,
where the finite element model is partitioned into design

regions and within each region, all elements are sized

by the same design variables. Additional details of the

optimization procedure are given in Appendix A.

EAL Implementation

All computer simulations are done using the EAL

analysis language. The optimization procedure
described in Appendix A has been implemented using

EAL. During development of the optimization

procedure and of the approximation algorithm, EAL
offered three key features. First, the analysis database is

open and can be easily manipulated. Second, EAL

provides a powerful command language with state of
the art computational features. Third, EAL allows for

simple inclusion of user-written FORTRAN subroutines
that can interact with the database and be controlled

using the command language.

The database features allow both element stiffness and

stress-displacement matrices to be easily manipulated.
Elements may be grouped such that design variable

linking is facilitated. Elements from different groups
can be collected into sets, and the resulting set of

elements can be manipulated as an entity. 12 For

example, damage scenarios are described using this set
feature. A set of elements, which may be derived from

different groups and element types, represents that

portion of a structure that is damaged. Manipulation of
the set allows for those elements' stiffness contribution

(AK) to be easily identified and modified.

The EAL command language provides a rich set of

linear algebra and sparse matrix operations. This

provides a good environment for prototyping, testing,
and implementation. Damage is modeled as reduced or
eliminated structural stiffness. The stiiTmess of the

structure, in sparse form, is directly manipulated to

reflect the damage for each design condition. Likewise,

element stress-displacement matrices are manipulated
for damaged elements prior to constraint evaluation.

Several FORTRAN routines are used to generate data,
such as the local buckling constraints, that are too

complicated, or computationally inefficient to be

implemented using the command language. Although

the EAL code was used for the present approximation
development, it is important to note that implementation
of the approximation could be done in most finite

element codes that utilize the displacement method of
analysis.

EAL provides CPU utilization information for

evaluation of computational efficiency. As
implemented, the optimization procedure can disable

the use of approximations for the damaged conditions.

This allows for comparison between the approximate
analysis and a complete reanalysis. The following
example problems use this feature to estimate the

accuracy and efficiency of the approximation.

Example Problems

Two example problems illustrate the accuracy and

efficiency of the method. First, a simple model of the
High Speed Civil Transport (HSCT) shows the effects

of the approximation order on accuracy of the

approximations near large area wing damage. The
second example problem is a finely meshed box beam

model, which demonstrates how accuracy and efficiency
of the approximations are affected as the model size

increases. In addition, the box beam model is used in a

full optimization using the approximation.
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Figure 4: Shear Stress Error vs. Damage
Magnitude.

Figure 4 shows the shear stress error in the skin panel
#24. Skin panel #24 is located near the fuselage,

adjacent to the damaged area. The improvement in

accuracy of the third order approximation compared to
the lower order approximations is much more dramatic

for this element. The third order approximation with
less than a 3% stress error is much more accurate than

first and second order approximations. Reducing the

stress and displacement approximation errors is

important when considering approximating design
derivatives of response.

Table 1: Design Derivative Approximations
Panel #24, shear stress

Central Diff.

Approximation

Central Diff.

Approximation

dr / dx d(lo_ "r) / d(lo_ x)

272749 0.028

367060 0.037

Rib #78. a:dal stress

dcr/dx

128192

119810

d(lo_ cr) / d(lo_ x)

1.72

1.61

Panel #163, normal stress

d_,_ / dx d(lo_ o'_,)/d(lo_ x)

Central Diff. 221382 0.62

Approximation 242030 0.58

Table 1 shows a comparison of the approximate
derivative of several typical stress components with

respect to the top wing panel design variable. Table 1
also shows the magnitudes of the derivatives and

logarithmic derivatives from both the difference

approximation and the approximation method proposed
in this work. The logarithmic derivative represents the

ratio of the fractional change in the function to the

fractional change in the variable. For example, a

logarithmic derivative (d(log or) / d(log x)) of 0.03

indicates that a I% change in x will lead to a 0.03%

change in or. When the logarithmic derivative is much

smaller than unity, the sensitivity of the parameter is
small and the derivative is difficult to evaluate

accurately. As can be seen from the large differences in

the derivative approximated by the different methods

for panel #24 and the correspondingly low values for
the logarithrmc derivative, the accuracy of either of

these methods may be poor. The design derivative

approximations for rib cap #78 and panel #163 show
much better correlation with the difference

approximation, and both have much larger logarithmic

derivatives than those of panel #24. Rib cap #78 and
panel #163 are also m the vicinity of the damage. A
third order approximation using 4 basis vectors was

used to generate these design derivative
approximations.

I 3,,..,,30./J

Figure 5: Design Regions and Top Surface Damage
Location for the Box Beam Model

Box Beam Test Cases

The next model is a 180-inch by 90-inch portion of a 3-

bay, titanium honeycomb wing box beam. This model
consists of 5,978 nodes, 480 2-node bar elements

representing spar caps, and 6,000 plate bending
elements representing the titanium honeycomb. There

are a total of 29,561 degrees of freedom in this model.

Two load cases are considered that correspond to 2.5g

and -1.0g maneuvers, respectively. There are three

design variable regions, shown in Figure 5, dividing the
beam evenly lengthwise for a total of 24 design

variables. The design variables consist of the spar cap
areas and the face sheet gauges and honeycomb core
depths of the webs, upper surface, and lower surface.

Each design region is optimized for mimmum weight
subject to strength and panel buckling constraints.

These result in 12,481 constraints. All subsequent
results are calculated at the optimum design conditions.

First, the accuracy of the approximation was examined.
Both the constraint and constraint sensitivities were

computed and compared with those calculated by

performing a complete reanalysis. A single load
condition corresponding to a 2.5g maneuver and a

single damage case were used. The damage considered

was debonding of a 15-inch by 30-inch section of the

bottom surface in the center bay 2. The approximation
was run using 2, 3, 4, and 5 displacement response basis

vectors generated nsingequation 8. These same basis

vectors are used for the response derivative
approximations along with the U0,x basis vector as in
equation 11.
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Figure 1: Simple HSCT Model.

Simple HSCT Test Case

Figure 1 shows a simple model of the High Speed Civil

Transport (HSCT). This is a relatively coarse half
model with 193 nodes, 449 2-node bar elements, 383

membrane elements, and 129 shear panel elements for a

total of 533 degrees of freedom. A single load case was

used that simulates a 2.5g pull-up maneuver. The

damage considered consisted of a complete loss of
structural stiffness for the top wing skin panels from the

connected ribs and spars at the wing's wailing edge,

next to the fuselage. The damage was simulated by

removing 8 membrane elements for the top wing skin

panels and 4 bar elements for the spar and rib caps in
this area of the wing. A single design variable for the

top wing panel thickness around the damage area was
considered. The design variable is associated with 22

triangular membrane elements that include the 8

damaged membrane elements.

As a global measure of the accuracy of the

approximation, the potential energy of the approximate
analysis is compared to that of a complete reanalysis. In
order to track the error, the stiffness of the damaged

elements are gradually reduced to zero by a factor, (1 -

a), so that a can be viewed as a damage magnitude
measure. First, second, and third order approximation

errors are shown in Figure 2. Although all three

approximations show a small global error, the accuracy

of theapproximations can only be truly assessed at the
local level.

Fil

Potenthll Energy Error

o,3OO%

0.1_y, i---,e,- _.e _0_. 1

ae 0.100% t

O.O(]O% *"

0 0.1 0.2 03

ure 2: Potential Energy Error

0.4 O.S 0.6 0.7 0,8 0.9

a

vs. Damage
Magnitude.

4._.

3._

ZO0_-

1.00% t

"2-_ t

Axial Stress Error, Spar #3

Fil ure 3: Axial Stress Error vs. Damage Magnitude.

Stress errors were also checked for elements that went

through large changes in stress due to nearby damage.

Figure 3 shows the axial stress error in a spar cap #3.
Spar cap #3 is located in the vicinity of the damaged
area (see figure 1). Both the first and second order

approximations show reasonable accuracy; however, the
third order approximation clearly indicates superior
accuracy for this bar element.
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Figure 6: Representative Stress Errors

The accuracy of the approximation for stress is shown

in Figure 6. The percent relative error to a complete

reanalysis is illustrated versus the number of

displacement response basis vectors. The average von
Mises stress error of all panel elements is shown along

with the stress error for two panels, which are located in

design region two in the vicinity of the damage. These
surface panels are considered good indicators of the

performance of the approximations for the optimal
design because their stress constraints are active (i.e.,

greater than -0.1). They exhibit large errors for 2 and 3
basis vectors, but they indicate good accuracy using 4
and 5 basis vectors.

The relative stress error for panel 803 shows a slight

increase when using three basis vectors compared to
two basis vectors. This is counter-intuitive to the

general trend of expected increasing accuracy when
using more terms in a series approximation. The

increasing error for this element is a local phenomenon
and can be attributed to low quality basis vectors. When
the fourth basis vector is included in the approximation,

the combination of these four basis vectors adequately

approximates the displacements in the region of panel
803.

The relative errors for the stress sensitivity of several
critical web elements are shown in Figure 7. These

elements showed the largest relative error for elements

having logarithmic derivatives greater than 0.2 and
active stress constraints. The sensitivity is with respect

to the face sheet thickness of an element located in

Table 2: CPU Times (seconds) for

Damage/Load Exact Static

Condition Analysis
2.5G 751.25

Undamaged

2.5G Damage 609.00
- 1.0G 753.47

Undamaged

-1.0G Damage 608.74

Calculation

Approx.

Analysis
731.71

98.07

727.34

98.04

design region two in the vicinity of the damage. The

average sensitivity error for elements with active stress
constraints was 0.018, 0.013, 0.011, and 0.011 for 2, 3,

4, and 5 displacement response basis vectors,
respectively. Although the average errors are small and

insensitive to the number of displacement response

basis vectors, individual element sensitivity results are
sensitive to the number of basis vectors (Figure 7).

Relative Stress Sensltlv_ Error
$0-

/

i -.,- weo.l 3780!4O

! W_)-2 4a,27 '

2 3 4 5

Numbc_r of Bull Vec'mm

Figure 7: Representative Stress Sensitivity Errors

The box beam is optimized subject to both the
undamaged condition with two load cases and five

damage conditions. The basic damage conditions

considered upper surface debonding, lower surface

debonding, web debonding, upper spar cap chord
fracture, and lower spar cap chord fracture, which were

combined with the load cases to produce ten design

conditions. The debonding considered 15-inch by 30-

inch sections of the web, along with top and bottom skin
panels. Two optimization runs were made. The ftrst

performed exact static analyses and semi-analytical

sensitivity calculations for each design cycle. The
second used the CA approximations with 5

displacement response basis vectors for all damage

design conditions (equation 3). CA based sensitivity
approximations are done for damage conditions using

the 5 displacement response basis vectors along with
u0,x basis vectors (equation 11).

Execution times for a Silicon Graphics 12qDIGO-2 are

summarized in Table 2. The load/damage condition is
shown along with the CPU times in seconds for static

analysis and sensitivity computations. The CPU times

for the damage conditions are averaged for each load

of Design Constraints and Their Sensitivities.

Exact Sens. Approx. Ratio Ratio Sens.

633,29

410.88

403.53

410.42

Sens°

629.91
Analysis

0.97 0.99

151.65 0.16 0.37

397.85 0.97 0.99

150.6l 0.16 0.37
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condition. The CPU times for the CA approximation are
compared to the CPU times for a complete reanalysis in

this table for a single design iteration. The ratios of

analysis times show a significant difference for the
damage conditions, but are close to unity for each

undamaged condition. This is due to the initial nominal
static result required by the both the CA approximation

and the exact analysis. The approximation shows

significant computational savings for the damage
conditions where reanalysis is required. It is also

important to note that the ratio of sensitivity

computation times do not show as great a computational

savings as the static analysis. This is due primarily to
the stress recovery stage of calculating the constraints

and their sensitivities. This significant computational

stage is identical for both the approximation and the
exact reanalysis. Thus, the computational efficiency of

the CA based sensitivity approximation is somewhat
diluted.

Figure 8 shows the CPU times for exact and

approximate damage optimization over the course of 20

iterations. In addition, it shows the objective function

value for both the complete reanalysis and approximate
reanalysis optimization runs over 20 iterations. (Note

the expanded scale.) The box beam weight fi'om the

approximate optimization run was within 0.2% of the
weight obtained using an exact reanalysis. In addition,

no constraints were violated in either optimization run

in the final design.

1.0[- Lower Surface - Cap Design Vanables

!
0.8 /"
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Figure 9: Lower Surface Spar Cap Areas
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The values of the design variables during the I l_r_onN-mi_" _0

optimization were also examined. Figure 9 shows the Figure I1: Upper Surface Skin Gauges
lower surface spar cap areas, comparing the design

variable values determined using a complete reanalysis
and approximate reanalysis. Figure 10 shows the lower

surface skin gauges. Figure 11 and Figure 12 show the

upper surface skin gauges and lower spar cap areas,
respectively.
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Figure 12: Upper Surface Spar Cap Areas

Many of the design variable values show some
oscillations near the end of the optimization run. This

phenomenon is likely caused by Linearization of the

problem, move limit size, and errors associated with the
sensitivity, calculations. Both the approximation to

design derivatives for the damaged structure and the

Taylor series approximation for the undamaged
structure (see Appendix A) contribute. The value of the

objective function is not significantly influenced by this

phenomenon.

The basic premise of damage tolerant design is that a

mass penalty is typically incurred if damage is not

considered during optimization. When this box beam is

optimized without considering damage, the resulting
weight is 1 i% lighter than the damage tolerant design.
However, when this lighter structure is damaged using

the damage condition that generated the largest number
of critical constraints, it can only carry 51.5% of the

applied loading. These low values indicate the danger
of substantial weight penalties for reinforcing the

structure against damage after the fact.

Using the timing remits from Table 2, the following
formula has been developed to estimate the runtime

savings using these approximations for structures
similar m model complexity to the box beam:

Ic. (1 + 0.023 dr. )+ .dc_ (0.137 + 0.009 dv_ )
R=

lc, (1+ 0.023 dv, )+.dc, ((3.812 + 0.023 dv, )

where, R is the ratio of a single approximate design

cycle to a single complete reanalysis design cycle; dv, is
the number of design variables; dca is the number of

damage design conditions, and lcn is the total number of

load cases.

This formula was tested by modifying the box beam

design problem for 8 design variables, 2 load cases, and

9 damage cases, which are combined into a total of 14

design conditions. The formula predicts a savings ratio
of 0.341, where the actual comparison yields a ratio of

0.324. This formula can be expected to vary for other

types of structures.

Conclusions

The case studies of the simple HSCT model and the

detailed box beam show good accuracy for the CA
approximation. The approximation reduced the cost of

the analysis of a damaged box model by a factor of six

and the cost of sensitivity by a factor of three. The
lower efficiency of sensitivity calculations is due to the

computational cost of stress recovery, which is common

to both the approximation and exact derivative
calculations. Overall, CPU time for the optimization

was reduced by about a factor of two.

For complex structural models, using five basis vectors

appears to provide good accuracy. Although the
displacement response values are accurate for an

approximation using three basis vectors, higher order

approximations are required to yield accurate sensitivity

values. Generation of each displacement response basis
vector required approximately 2% of the computational

cost of performing a single analysis, so using a high

order approximation did not impose a significant

penalty.

The runtime savings estimation lets designers assess the

computational savings that these approximations
provide. They can get a qualitative assessment of the

computational cost of changing the number of design
variables and the number of damage scenarios. For most

damage tolerant airframe designs, a large number of
damage scenarios (related to the number of load cases

and design variables) would be typical in order to avoid

designs tailored only to particular damage cases. The

CA approximation makes damage tolerant design
feasible by allowing designers to consider more damage

cases and load cases in optimization problems by

reducing the computational cost of each design cycle.
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Appendix A

Since the response approximations discussed in this

paper are added to the approximation used in the SLP

procedure, we start by describing the basic procedure
without the approximations for the damaged structures
discussed in this paper. This basic SLP solution

procedure is shown in the flowchart of Figure 13.

An iteration is represented by a circuit through the
outermost loop. Iterations are either approximate or

exact. An approximate iteration is defined as a pass

through the outermost loop using approximate
sensitivity derivatives. This approximation is described
by Scotti _° and satisfies a second order Taylor series

relation between the new and previous constraint

sensitivities. An exact iteration is defined as a pass
through the outermost loop using exact sensitivity
derivatives, where the semi-analytic method is used for
displacement derivatives, which are used in a first-order

Taylor series to determine local, perturbed constraint

values. Constraint derivatives are then determined by
finite differences. In the present paper, the branch to the
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"ApproximateSensitivityDerivatives"stagewas
disabledto betterillustratetheeffectof thedamage
approximation.

Theoptimizationprocedureiswrittenprimarilyin the

EAL command language with the addition of three
external processors, which are written in FORTRAN. _

Processors have been developed to evaluate stress and

local buckling constraints for a number of structural
sections common to aircraft design. Sequential linear

programming using the MINOS V5.4 linear

programming routine with move limits, as described by
Scotti _°, performs the optimization.

This procedure is now modified to incorporate the CA.

instead of the exact analysis and sensitivity for damaged
configurations.

Figure 14 shows the implementation of CA in the

"Static Analysis and Constraint Evaluation" stage of the

optimization procedure. Design conditions are made up
from a load case and damage scenario. Multiple load

cases and damage scenarios are allowed, and they may

be combined in any way. Design conditions give a
designer control over effectively matching critical load

and damage situations. For design conditions with

damage, the nominal state (u0) is initially undamaged

and is exactly solved before the effect of damage is
approximated using CA, equations 3 - 8. Figure 15

shows the implementation of the approximation to

design derivatives when calculating sensitivity
derivatives, and replaces the "Exact Sensitivity

Derivatives" stage in figure 13. It is important to note
that the box titled "Semi-analytic/Approx. Constraint

Derivatives" employs the same process shown in Figure

13 for an undamaged case. Our approximation to
displacement derivatives, equations 15 - 18, is only

used for damage scenarios, and constraint derivatives
are obtained from displacement derivatives in the same

manner as the undamaged case.

Com10ute Exact I Comgute Approx.

Uisolacernents I Ois_acemoc_ts

l__
t EvaluateConstraints I'_-

-@

Figure 14: Static Analysis and Constraint
Evaluation with Approximations

Comm-aint CoUnt

I_mv_ti T Oenvat_ I

-+
Figure 15: Calculation of Constraint Derivatives
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Introduction

This addendum describes the work performed on the adjoint method of sensitivity

calculation. The adjoint method is an alternative to the direct method and the finite

difference method which are widely used. Finite difference derivatives are expensive

computationally and prone to errors. The direct and adjoint methods are two classes of

analytical sensitivity methods.

The adjoint method begins with calculation of an adjoint load, which depends on the

particular response function of interest. It requires specialized programming for each

type of response function, and this need has delayed its widespread application. However,

for problems with multiple load cases or multiple structural configurations, such as

damaged versions of a structure, the adjoint method can be much more efficient than the

direct method. This computational advantage is enhanced for derivatives of stress

functions because these derivatives can be calculated directly rather than obtained from

derivatives of the displacements.

The objective of this part of the study was to lay the foundation for a demonstration of the

advantage of the adjoint method for optimization under a variety of constraints. In

particular, a condition was established that, when satisfied by stress and strain constraints,

leads to a particularly easy implementation of the adjoint method. Applications with the

yon Mises stress limit, which is shown to satisfy this condition, are used as examples.



The Direct and Adjoint Methods

The discretized equations of equilibrium may be written in terms of the stiffness matrix

K the force vector f, and the displacement vector u as

Ku:f (1)

The recovery of the stress field _ from the displacement vector may be written as

o =Su (2)

When we differentiate these two equations with respect to a parameterp we get

KupfP --Kpu, cp=Spu+Sup (3)

where subscript "p' denotes differentiation with respect to the design variable and ff is

called the pseudo load. The direct method consists of calculating displacement and stress

derivatives from Eq. (3). Because the matrix K is available in factored form, the solution

for displacement derivatives is much cheaper than the solution for the displacements.

However, obtaining stress derivatives from displacement derivatives costs about the same

as the original stress recovery, diluting the savings associated with the direct method

compared to finite difference calculation. The method is easily implemented in finite

element programs using finite difference evaluation of Kp.

The adjoint method tackles directly derivatives of displacement functionals of the form

g(u,p). The derivative of g is given as

gp=g,p+g,..up (4)



wherea commadenotesa partial derivativewith respectto the following subscriptand a

dotan innerproduct.With a bit of algebra,this canbeconvertedinto

gp=g,p+U _ .ti, (5)

where u _ is the adjoint displacement field, found as a solution of the system

Ku_= g,.r (6)

The direct method requires solutions of Eq. (3) for each design variable p, each load case,

and each structural configuration. In contrast, the adjoint method needs to calculate

derivatives of only potentially active constraints. The number of such constraints is of the

order of the number of design variables. Consequently. when the number of load cases or

structural configurations is large, the adjoint method is much more efficient than the

direct method. Furthermore, it does not have to go through the stress recovery, stage,

translating displacement derivatives into stress derivatives.

However, there are implementation difficulties associated with the adjoint method, which

prevent its wide-use application. The adjoint load vector g,r requires the derivatives of

the response function with respect to displacement components. For stress components,

or stress functions, such as the von Mises equivalent stress, g,r depends on the stress-

displacement relationship, and hence on the details of the finite elements used. The

information is not always readily available, and even when it is, the adjoint load must be

programmed differently for each different finite element, an enormous programming

burden. Fortunately, using a continuum formulation of the adjoint method instead of a

discretized formulation can eliminate this burden.



Continuum Formulation of Stress Sensitivity

For the continuum approach, the stress function is more conveniently expressed as a

stress functional G

G = Ig(o',p)dV (7)

where c_ is a vector whose elements may be stresses or stress resultants. The integration

typically represents an averaging process through a small volume of the structure. For a

truss member o is a scalar and is the axial force in the member. For a plane-stress

element, _ is the vector of stress resultants, given by

N v = tD c.v

N - N-Iy LYxy

(8)

where t is the plate thickness and D is the constitutive matrix. The sensitivity of G to

the design variable p is obtained by differentiating Eq. (7) with respect to p to yield

G, = I[g.p + g.,,-(or a, + o'_e,)ldv (9)

where a dot indicates inner product, a subscript following a comma a partial derivative

and that without a comma a total derivative, p=t for a plane-stress element.



In this formulation, it canbe shown(Haftka and G_dal, 1992,p.314) that the adjoint

load is an initial straingivenby g,_ so that the loading depends on the stress function but

not on the details of the finite element. This loading can be easily applied, then, in any

program that has initial strain loading capabilities. Under the application of the adjoint

load, the resulting displacement field is called the adjoint displacement u _. It can be

shown that

where tv is the pseudo load (Eq. 3). The integrand in Eq. (I0) can be simplified under

certain conditions. Ifg is a homogeneous function of degree n in its arguments, that is, if

g(c_,cp) = c" g(_, p) (11)

then it can be shown that

g.,, .c + pg.p =ng (12)

If n=0, the constraint is unchanged (Eq. 11) when both the stresses c and the design

variable p are scaled up or down by the same factor. Here, the case where n=0 is of



importancesince this applies to truss membersand plane-stresselementsas will be

shown. Theaveragestressin atrussmemberis givenby

G= L

where L is the length and ,4 is the cross-sectional area. Similarly, the average von Mises

stress in a plane-stress element is given by

G = _1 icr.Mda (14)
a

where a is the surface area of the plate and _v._t is the von Mises stress defined by

G,, t ==- ; ct- ._ -NxNy +N; +3i ._y (15)
t O'.vp

where c_yp is the yield stress. In both Eqs. (13) and (14), the integrands are homogeneous

to the 0th degree

Dividing Eq. (12) byp and keeping n for the time being,

If _ is such that _/P=_,o then

13" ?/

g._ ---+g.p = --g (16)
P P



n

g,_-cp +g.p = --g (17)
P

The condition on stress is satisfied for a truss member and a plate under in-plane loading

when the design variables are the cross-sectional area and the plate thickness,

respectively. For the latter element, for example, Nt =N/t from Eq. (8).

Equation (1 O) hence becomes

Gp = _pgldV +fP.u" (18)

When n=0, the integral in Eq. (18) disappears and the sensitivity is calculated easily.

When n is non-zero, Eq. (18) is still easier to calculate than Eq. (10); the integrand is

simply a multiple of the function g. Thus we find that for stress constraints in truss and

membrane elements we have an additional simplification in the calculation of the

derivatives.

The adjoint initial strain for a von Mises constraint is given by (Eqs. 14,15)

g r = 1 (2N - N') (19)
2crypat_

where T denotes transpose and



N'-[N_ N,-4N.,_] r (20)

Implementation in EAL

The adjoint approach has been implemented in EAL (Engineering Analysis Language),

for von IVlises stress constraints for plane-stress elements with thickness as the design

variable. The initial strain (Eq. 19) is implemented via dislocations within each element

whose stress sensitivity is sought. A runstream was written for this purpose. Simple

plate structures having known solutions were analyzed with this runstream for

verification. The results of this runstrearn were compared to those of the runstream

written by Ed Jones of EISI and were seen to be identical. Ed Jones' approach, however,

was found more suitable for automating the process for an arbitrary structural mesh and

was therefore adopted from that point on. His runstream was modified and made more

general.

The basic steps in sensitivity analysis with the adjoint method using EAL are the

following:

• Given the stress state in the structure due to the external loading, calculate the initial

strains to be imposed and the corresponding dislocations that would induce those

strains in regions of the structure where sensitivity is sought, namely regions where

constraints are critical.

• Apply the dislocations to the structure to compute the adjoint displacement vector uL

• Compute the pseudo load ff comprising forces which, in the direct method, would be

applied to the structure to solve for the response sensitivity up, Eq. (3). The pseudo

load vector consists mostly of zeros except for entries corresponding to the nodes of

the element(s) whose thickness is being changed.

• Use u _ and tv in Eq. (18) to compute the sensitivity.

The pseudo load can be computed in two ways:



From Eq. (3), which requires the derivative of the global stiffness matrix K. That

derivative can be obtained from finite difference and will be filled with zeros except

for those entries corresponding to the modified element(s). The derivative will then

be postmultiplied with the nominal displacement u. Advantage can be taken of the

sparse nature of Kp.

From a continuum approach, fo is the load which induces a strain field of-E/t in the

modified element(s) with _ being the strain state in the nominal structure due to the

external loads (Haftka and Gfirdal, 1992, p. 309). As such, the problem here is not

different from imposing an initial strain that causes adjoint displacements. Hence,

dislocations can be computed corresponding to -_/t and, in turn, proceeding one step

further, equivalent nodal forces corresponding to these dislocations. The latter forces

will be the pseudo loads.

The preceding steps were implemented in a simple model of high speed civil transport

(HSCT). The pseudo loads were computed with the continuum approach. The first and

the second approaches were checked against each other with a simpler plate structure.

Analysis runs were made with the HSCT model under five load cases. Currently

investigation is carried out of how various load cases govern stress constraints relative to

each other throughout the structure.

A copy of the runstream that implements the adjoint method for triangular E31 elements

in EAL is attached.
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